
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)

e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver. IV (Mar - Apr.2015), PP 15-21
www.iosrjournals.org

DOI: 10.9790/2834-10241521 www.iosrjournals.org 15 | Page

A Generic Randomization Framework Architecture for Test

Execution in Automated Testing Of SoC

Subinoy Das
1
, Surendra Shamanna

2

1(IFIN ATV PSV, Infineon Technologies India Pvt. Ltd., Bangalore, India)
2(IFIN ATV PSV, Infineon Technologies India Pvt. Ltd., Bangalore, India)

Abstract : Conventional directed tests lack the flexibility to cover different variations of test configurations. To

overcome the problem and obtain better coverage, randomization is adopted. Generic randomization framework

for test execution in automated testing of SoC is effective for generating real time stimulus that covers variations

in test configurations such as different functional modes, register configurations, and network data packets. It

provides a way to capture the state of the DUT (Device Under Test) at randomly generated parameter

configurations. It prevents the selection bias and also accidental bias. It eradicates the origin of bias and

provides better bug fixation in automated testing of SoC in post-silicon validation.

Keywords: Automated Validation Execution Flow, Post Silicon Validation, Randomization Framework, Test

Automation

I. Introduction
Due to high complexity of modern designs and increasing pressure to reduce their time-to-market, bugs

can escape the pre silicon verification environment. Therefore in order to check for extreme cases and escaped

bugs post silicon environment is used effectively. In order to achieve the “zero defect SoC” (System on Chip), it

is required to check whether all the possible configurations/features of the SoC are working as expected or not.

This involves testing of SoC using huge number of tests manually and consumes a lot of time, and is error prone

as well. Thus, automation reduces the process time for the validation of SoC. This can be done by using an

automation tool to execute the test flows and writing a suitable process for controlling the test execution on the

DUT (Device Under Test). Randomization framework forms a part of the automated SoC validation process.
The randomization automation framework can configure test parameters and pass them to the DUT, and

generate status report.

Generic randomization framework provides a way to capture the state of the DUT. It provides

randomly generated test configurations for test execution. Absence of bias means more reliable tests for

automated SoC validation process. Ultimate goal of randomization is to ensure that each configuration of

parameters is equally likely to be assigned to the test execution, so that extreme cases are checked and better

coverage is obtained.

II. Scope Of Work
Generic randomized test framework architecture automates the generation of random test

configurations for test execution. It provides a way for passing execution parameters to the DUT and save the

recorded CPU state build up. This saved state buildup of the DUT is used to bring it back to the last known state

just before failure and then execute the smaller set of execution parameters to the point of failure, thus requiring

lesser execution time. Randomization framework enables the execution of smaller set of configurations more

frequently and requires shorter reproduction time. Generic randomization framework will generate a random set

of reproducible parameters and pass it to the test executable. After accepting the parameters of the framework,

the test will carry out its operations for validation of SoC. Generic randomization framework is solely

responsible for the passing of random reproducible parameter values to the test executable at run time.

III. Methodology
Randomization framework consists of designing a process that can be run through the automation tool

and it will start execution of the test on the DUT. ”Fig. 1” shows the basic block diagram of the randomization

framework. ”Fig 4” shows the features/functions in the randomization framework.

Selection of parameters will be random in nature and constant for a particular seed number and seed

type, so that the effect is reproducible and repeatable. The set of selected parameters/test configurations will be

passed to the DUT, and then the DUT will be reconfigured repeatedly with/without performing any reset for the

next iteration cycles based on the number of seed iterations.

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

DOI: 10.9790/2834-10241521 www.iosrjournals.org 16 | Page

Figure 1. Randomization framework block diagram Figure 4. Functional flow for the randomization framework

Random value generation- Generation of randomization parameters includes obtaining the random

numbers through a random number generator based on a specific seed number [Input Value] ,so that the event is

reproducible. The randomly generated parameter values are then constrained by user-defined

continuous/discontinuous limits. And selected parameter values are passed to the test execution. This technique

maintains complete randomness of the assignment of parameters to a particular test executable configuration.

Seed number forms the nodes for the chain of random parameters generated. If seed number and seed type are

known at any node point, the set of events can be reproduced again.

Figure 2. Random number generation using incremental seed type Figure 3. Random number generation using random
 seed type

Incremental / Random Seed Type - Incremental seed number introduces a single level of

randomization. In this, seed number is incremental in nature. Based on the seed number, the random

parameters are selected from user-defined parameter constraints forming single level of randomization. ”Fig 2”

shows the generation of random parameters using incremental seed type. Random seed number introduces two

levels of randomization. In the first level, seed number is randomized and, in the second level depending on seed

number the random parameters are selected from user-defined constraints. ”Fig 3” shows the generation of

random parameters using random seed type.

DUT Reset once / Reset on every test configuration - Reset once /Reset on every test configuration

can be controlled by the “single reset” flag option. If “single reset” flag is set, then DUT will reset only once,

the next test configurations will be passed without resetting the device. Resetting only once ensures CPU state

buildup. If „single reset‟ flag is not set, then DUT will reset on every iteration before passing the test
configurations. Resetting on every iteration ensures the recovery of the DUT from failure, before passing test

configurations.

Synchronization between Test execution and Automation flow - For maintaining synchronization

between test execution and automation flow, shared addresses of DUT are used. Using automation tool‟s built-in

functions for memory reading and writing, control words can be used for establishing a semaphore mechanism

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

DOI: 10.9790/2834-10241521 www.iosrjournals.org 17 | Page

to pass configurations from automation flow to the test execution, and get results back from test execution to the

automation flow.

Test considered - For validating the generic randomization framework, a use-case of SENT (Single
Edge Nibble Transmission) Normal Frame is considered whose intent is to check for all possible frequencies

and data values for the SENT Normal Frame Format by configuring the GTM (Generic Timer Module) for

generating these SENT frames. “Fig. 5” shows the automation tool‟s GUI (Graphical User Interface) for the

randomization framework, test parameters can be entered in continuous/discontinuous parameter format.

Continuous/Discontinuous parameters can be specified in [min-max] /[value1, value2, value3…] format.

Table 1 shows the “Randomization framework field values” which is same for all tests. Table 2 shows

the “Test execution parameters” which are specific to the SENT Normal test.

Considered Test’s Flow -

Step [1]. Begin.

Step [2]. Initialization of GTM.
Step [3]. Test accepts selected parameters and test iteration from the Randomization framework through shared

addresses, using semaphore mechanism.

Step [4]. Then test performs frame and CRC (Cyclic Redundancy Check) calculations, and loads data into the

FIFO (First In First Out). Then GTM and SENT are configured to send the data.

Step [5]. It waits for 500 interrupts, for the data to be received in the SENT RD (SENT Receive Data) register.

Step [6]. After that counter and ATOM (Advanced Routing Unit connected Timer Output Module) channel is

disabled, compare and shadow registers are cleared.

Step [7]. Then, based on the test iteration which is being passed by the Automation flow process, step[3]-step-

[6] is performed again in an iterative way.

Step [8]. Exit.

Table 1: Randomization Framework Fields Table 2: Sent Normal Frame” Test Execution Parameters

Randomization framework Process flow -

Step [1]. Begin.

Step [2]. Fetch the seed number, seed type, “single reset” and seed iteration for the randomization framework and

hex-file, configuration file, MC boot configuration file for the SENT Normal Frame test from the user.

Step [3]. Fetch the test parameters from the framework.

Step [4]. The parameters in [min-max]/[value1,value2,value3….]format is separated and converted to

hexadecimal format for transferring it to memory.

Step [5]. If “single reset” field is set, then seed iteration becomes equal to the test iteration, and if this field is not

set then test iteration becomes equal to unity.
Step [6]. Downloading of the test executable for SENT Normal Frame test takes place in the SoC, and just after

that pre-configurations like initializations for clock, and address definitions are done.

Step [7]. Based on the “single reset” flag set or not in the framework hard reset is being performed for the SoC .If

“single reset” flag is set, hard reset is performed only once otherwise reset is performed on every seed iteration.

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

DOI: 10.9790/2834-10241521 www.iosrjournals.org 18 | Page

Step [8]. The test writes a control word [Entry pattern] in the shared memory to indicate beginning of the test

execution, and reads number of test iteration which is being passed from the automation tool process through

shared memory address.
Step [9]. Test polls for the control word [resume pattern] in the same memory address which is going to be

written from the automation flow, to resume the test.

Step [10]. Based on the seed number and seed type, a random parameter value will be selected in the user

specified parameter range.

Step [11]. The random values generated, are written to the shared memory addresses based on the number

of parameters from the automation process.

Step [12]. After that, the control word for resuming test is written from the automation process .With this,

the test resumes and reads all the randomized parameter data values from the shared memory addresses.

Step [13]. The test executes for all the specified parameter configurations from the framework and the

data is transmitted from one port to another

Step [14]. The functional coverage of the test can be monitored using prints from the test directly on to
automation tool‟s log file, which is shown in the result section

Step [15]. After the test is executed, the test will write a control word to indicate the end of the of the test

execution.

Step [16]. Based on the number of seed iterations and “single reset” flag being set or not, process

iterations are performed. If the “single reset” flag is set, the steps 9-15 are repeated. And if the flag is not set, the

steps from 7-15 are performed in an iterative way.

Step [17]. Exit.

Figure 5: Automation tool‟s Randomization Framework GUI

IV. Result Analysis
Randomization framework has been successfully implemented and randomized parameters are being

selected between the range specified by the user, and are passed from automation tool‟s GUI to the test

execution. See the appendix section for results in more detail.

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

DOI: 10.9790/2834-10241521 www.iosrjournals.org 19 | Page

V. Conclusions
Randomization framework solved the problem of biasing in test execution for validation of SoC.

Instead of user selecting any parameter value, it is required to provide the range within which values are

required to be generated as per the data specifications. This is better than the standalone framework as it offers

more coverage features in validation.

Thus, generic randomization framework for DUT would help to stress SoC components and gives user

run control through automation software setup. It also helps to extract coverage and debug information from

time to time through execution of test.

VI. Future Scope
The work has a potential to be extended by adding some more features, and its application on other areas as

follows:

[1] Cases of interdependent parameters and scenario randomization where different test execution scenarios can

be randomized.

[2] Application of the randomization framework in areas of communication between two systems using

different randomized communication protocol.

[3] Application of Randomization Framework for Memory testing-where different memory blocks are

considered randomly for reading/writing to test different memory accesses.

Acknowledgements
Thanks to Infineon Technologies India Pvt. Ltd., Bangalore for providing an opportunity to carry out

this work. Thanks to Sadashivaiah Shivaprasad for his overall management for carrying out this project work.

Thanks to Pammi Sesha (IFIN ATV PSV) for his support. Thanks to Mr. Rahul Thati (IFIN ATV PSV) for

validation of the framework using SENT test. Our special Thanks to Ramasamy Subramanian for his valuable

inputs towards the project work.

References
[1]. D.Ghosh, R.Subramaniam, V.Murthy, “A Randomized Methodology for Post-Silicon Validation of CAN and other Communication

Modules”, IN: Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on 22-25

Aug. 2013.

Appendix
In the “Fig. 6(a)-(b)” and “Fig. 7(a)-(b)” corresponding markings indicate-

[1] Downloading of the test executable to the DUT.

[2] Seed number and [3] Seed type.

[4] Selection of random parameters based on the seed type –incremental/random, and seed number.

[5] Control word [entry pattern]- written from the test .

[6] Writing the parameters to the shared memory locations.

[7] Control word [resume pattern]-written from the automation process.

[8] Prints from the test on the automation tool‟s result log file.
[9] Control word [end pattern] –written from the test.

[10] DUT reset once/reset on every iteration.

”Fig 6(a)” and “Fig 6(b)” show the result log obtained while downloading the test executable in flash

using single board randomization framework with incremental seed type for three seed iterations and resetting

the DUT on every test iteration, to ensure the recovery of the DUT from failure.

“Fig.7(a)” and ”Fig.7(b)” shows result log generated in randomization framework for single board

randomization framework with random seed type for three seed iterations without resetting the DUT more than

once, to ensure a CPU state buildup. Random seed type is different from the incremental seed type, as the seed

numbers generated are random in nature depending on their previous seed number.

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

DOI: 10.9790/2834-10241521 www.iosrjournals.org 20 | Page

Figure.6 (a) Result log obtained for randomization framework

”SENT Normal Frame Test” using Incremental seed type and

“single reset” unset.

 Figure.6(b) Result log obtained for randomization

framework ”SENT Normal Frame Test” using

incremental seed type and “single reset” flag unset.

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

DOI: 10.9790/2834-10241521 www.iosrjournals.org 21 | Page

Figure.7(b) Result log obtained for

randomization framework ”SENT Normal Frame

Test” using random seed type and “single reset”

flag set .

Figure.7(a) Result log obtained for randomization

framework ”SENT Normal Frame Test” using

random seed type and “single reset” flag set.

